There are many low-order explosives that can be purchased in gun stores and used in explosive devices. However, it is possible that a wise wise store owner would not sell these substances to a suspicious-looking individual. Such an individual would then be forced to resort to making his own low-order explosives.
BLACK POWDER
First made by the Chinese for use in fireworks, black powder was first used in weapons and explosives in the 12th century. It is very simple to make, but it is not very powerful or safe. Only about 50% of black powder is converted to hot gasses when it is burned; the other half is mostly very fine burned particles. Black powder has one major problem: it can be ignited by static electricity. This is very bad, and it means that the material must be made with wooden or clay tools. Anyway, a misguided individual could manufacture black powder at home with the following procedure:
NITROCELLULOSE
Nitrocellulose is usually called "gunpowder" or "guncotton". It is more stable than black powder, and it produces a much greater volume of hot gas. It also burns much faster than black powder when it is in a confined space. Finally, nitrocellulose is fairly easy to make, as outlined by the following procedure:
There are nearly an infinite number of fuel-oxodizer mixtures that can be produced by a misguided individual in his own home. Some are very effective and dangerous, while others are safer and less effective. A list of working fuel-oxodizer mixtures will be presented, but the exact measurements of each compound are debatable for maximum effectiveness. A rough estimate will be given of the percentages of each fuel and oxodizer:
oxodizer, % by weight fuel, % by weight speed # notes ================================================================================ potassium chlorate 67% sulfur 33% 5 friction/impact sensitive; unstable -------------------------------------------------------------------------------- potassium chlorate 50% sugar 35% 5 fairly slow burning; charcoal 15% unstable -------------------------------------------------------------------------------- potassium chlorate 50% sulfur 25% 8 extremely magnesium or unstable! aluminum dust 25% -------------------------------------------------------------------------------- potassium chlorate 67% magnesium or 8 unstable aluminum dust 33% -------------------------------------------------------------------------------- sodium nitrate 65% magnesium dust 30% ? unpredictable sulfur 5% burn rate -------------------------------------------------------------------------------- potassium permanganate 60% glycerine 40% 4 delay before ignition depends WARNING: IGNITES SPONTANEOUSLY WITH GLYCERINE!!! upon grain size -------------------------------------------------------------------------------- potassium permanganate 67% sulfur 33% 5 unstable -------------------------------------------------------------------------------- potassium permangenate 60% sulfur 20% 5 unstable magnesium or aluminum dust 20% -------------------------------------------------------------------------------- potassium permanganate 50% sugar 50% 3 ? -------------------------------------------------------------------------------- potassium nitrate 75% charcoal 15% 7 this is sulfur 10% black powder! -------------------------------------------------------------------------------- potassium nitrate 60% powdered iron 1 burns very hot or magnesium 40% -------------------------------------------------------------------------------- potassium chlorate 75% phosphorus 8 used to make strike- sesquisulfide 25% anywhere matches -------------------------------------------------------------------------------- ammonium perchlorate 70% aluminum dust 30% 6 solid fuel for and small amount of space shuttle iron oxide -------------------------------------------------------------------------------- potassium perchlorate 67% magnesium or 10 flash powder (sodium perchlorate) aluminum dust 33% -------------------------------------------------------------------------------- potassium perchlorate 60% magnesium or 8 alternate (sodium perchlorate) aluminum dust 20% flash powder sulfur 20% -------------------------------------------------------------------------------- barium nitrate 30% aluminum dust 30% 9 alternate potassium perchlorate 30% flash powder -------------------------------------------------------------------------------- barium peroxide 90% magnesium dust 5% 10 alternate aluminum dust 5% flash powder -------------------------------------------------------------------------------- potassium perchlorate 50% sulfur 25% 8 slightly magnesium or unstable aluminum dust 25% -------------------------------------------------------------------------------- potassium chlorate 67% red phosphorus 27% 7 very unstable calcium carbonate 3% sulfur 3% impact sensitive -------------------------------------------------------------------------------- potassium permanganate 50% powdered sugar 25% 7 unstable; aluminum or ignites if magnesium dust 25% it gets wet! -------------------------------------------------------------------------------- potassium chlorate 75% charcoal dust 15% 6 unstable sulfur 10% ================================================================================
NOTE: Mixtures that uses substitutions of sodium perchlorate for potassium perchlorate become moisture-absorbent and less stable.
The higher the speed number, the faster the fuel-oxodizer mixture burns AFTER ignition. Also, as a rule, the finer the powder, the faster the rate of burning.
As one can easily see, there is a wide variety of fuel-oxodizer mixtures that can be made at home. By altering the amounts of fuel and oxodizer(s), different burn rates can be achieved, but this also can change the sensitivity of the mixture.
PERCHLORATES
As a rule, any oxidizable material that is treated with perchloric acid will become a low order explosive. Metals, however, such as potassium or sodium, become excellent bases for flash-type powders. Some materials that can be perchlorated are cotton, paper, and sawdust. To produce potassium or sodium perchlorate, simply acquire the hydroxide of that metal, e.g. sodium or potassium hydroxide. It is a good idea to test the material to be perchlorated with a very small amount of acid, since some of the materials tend to react explosively when contacted by the acid. Solutions of sodium or potassium hydroxide are ideal.
HIGH-ORDER EXPLOSIVES
High order explosives can be made in the home without too much difficulty. The main problem is acquiring the nitric acid to produce the high explosive. Most high explosives detonate because their molecular structure is made up of some fuel and usually three or more NO2 ( nitrogen dioxide ) molecules. T.N.T., or Tri-Nitro-Toluene is an excellent example of such a material. When a shock wave passes through an molecule of T.N.T., the nitrogen dioxide bond is broken, and the oxygen combines with the fuel, all in a matter of microseconds. This accounts for the great power of nitrogen-based explosives. Remembering that these procedures are NEVER TO BE CARRIED OUT, several methods of manufacturing high-order explosives in the home are listed.
RDX
R.D.X., also called cyclonite, or composition C-1 (when mixed with plasticisers) is one of the most valuable of all military explosives. This is because it has more than 150% of the power of T.N.T., and is much easier to detonate. It should not be used alone, since it can be set off by a not-too severe shock. It is less sensitive than mercury fulminated, or nitroglycerine, but it is still too sensitive to be used alone. R.D.X. can be made by the surprisingly simple method outlined hereafter. It is much easier to make in the home than all other high explosives, with the possible exception of ammonium nitrate.
AMMONIUM NITRATE
Ammonium nitrate could be made by a terrorist according to the hap- hazard method, or it could be stolen from a construction site, since it is usually used in blasting, because it is very stable and insensitive to shock and heat. A terrorist could also buy several Instant Cold-Paks from a drug store or medical supply store. The major disadvantage with ammonium nitrate, from a terrorist's point of view, would be detonating it. A rather powerful priming charge must be used, and usually with a booster charge. The diagram below will explain.
_________________________________________ | | | ________| | | | | T.N.T.| ammonium nitrate | |primer |booster| | |_______| | | | | | |_______|_______________________________|
The primer explodes, detonating the T.N.T., which detonates, sending a tremendous shockwave through the ammonium nitrate, detonating it.
ANFOS
ANFO is an acronym for Ammonium Nitrate - Fuel Oil Solution. An ANFO solves the only other major problem with ammonium nitrate: its tendency to pick up water vapor from the air. This results in the explosive failing to detonate when such an attempt is made. This is rectified by mixing 94% (by weight) ammonium nitrate with 6% fuel oil, or kerosene. The kerosene keeps the ammonium nitrate from absorbing moisture from the air. An ANFO also requires a large shockwave to set it off.
TNT
T.N.T., or Tri-Nitro-Toluene, is perhaps the second oldest known high explosive. Dynamite, of course, was the first. It is certainly the best known high explosive, since it has been popularized by early morning cartoons. It is the standard for comparing other explosives to, since it is the most well known. In industry, a T.N.T. is made by a three step nitration process that is designed to conserve the nitric and sulfuric acids which are used to make the product. A terrorist, however, would probably opt for the less economical one step method. The one step process is performed by treating toluene with very strong (fuming) sulfuric acid. Then, the sulfated toluene is treated with very strong (fuming) nitric acid in an ice bath. Cold water is added the solution, and it is filtered.
Potassium chlorate itself cannot be made in the home, but it can be obtained from labs. If potassium chlorate is mixed with a small amount of vaseline, or other petroleum jelly, and a shockwave is passed through it, the material will detonate with slightly more power than black powder. It must, however, be confined to detonate it in this manner. The procedure for making such an explosive is outlined below:
DYNAMITE
The name dynamite comes from the Greek word "dynamis", meaning power. Dynamite was invented by Nobel shortly after he made nitroglycerine. It was made because nitroglycerine was so dangerously sensitive to shock. A misguided individual with some sanity would, after making nitroglycerine (an insane act) would immediately convert it to dynamite. This can be done by adding various materials to the nitroglycerine, such as sawdust. The sawdust holds a large weight of nitroglycerine per volume. Other materials, such as ammonium nitrate could be added, and they would tend to desensitize the explosive, and increase the power. But even these nitroglycerine compounds are not really safe.
Nitrostarch explosives are simple to make, and are fairly powerful. All that need be done is treat various starches with a mixture of concentrated nitric and sulfuric acids. 10 ml of concentrated sulfuric acid is added to 10 ml of concentrated nitric acid. To this mixture is added 0.5 grams of starch. Cold water is added, and the apparently unchanged nitrostarch is filtered out. Nitrostarch explosives are of slightly lower power than T.N.T., but they are more readily detonated.
PICRIC ACID
Picric acid, also known as Tri-Nitro-Phenol, or T.N.P., is a military explosive that is most often used as a booster charge to set off another less sensitive explosive, such as T.N.T. It another explosive that is fairly simple to make, assuming that one can acquire the concentrated sulfuric and nitric acids. Its procedure for manufacture is given in many college chemistry lab manuals, and is easy to follow. The main problem with picric acid is its tendency to form dangerously sensitive and unstable picrate salts, such as potassium picrate. For this reason, it is usually made into a safer form, such as ammonium picrate, also called explosive D. A social deviant would probably use a formula similar to the one presented here to make picric acid.
Ammonium picrate, also called Explosive D, is another safety explosive. It requires a substantial shock to cause it to detonate, slightly less than that required to detonate ammonium nitrate. It is much safer than picric acid, since it has little tendency to form hazardous unstable salts when placed in metal containers. It is simple to make from picric acid and clear household ammonia. All that need be done is put the picric acid crystals into a glass container and dissolve them in a great quantity of hot water. Add clear household ammonia in excess, and allow the excess ammonia to evaporate. The powder remaining should be ammonium picrate.
Nitrogen trichloride, also known as chloride of azode, is an oily yellow liquid. It explodes violently when it is heated above 60 degrees celsius, or when it comes in contact with an open flame or spark. It is fairly simple to produce.
LEAD AZIDE
Lead Azide is a material that is often used as a booster charge for other explosive, but it does well enough on its own as a fairly sensitive explosive. It does not detonate too easily by percussion or impact, but it is easily detonated by heat from an igniter wire, or a blasting cap. It is simple to produce, assuming that the necessary chemicals can be procured. By dissolving sodium azide and lead acetate in water in separate beakers, the two materials are put into an aqueous state. Mix the two beakers together, and apply a gentle heat. Add an excess of the lead acetate solution, until no reaction occurs, and the precipitate on the bottom of the beaker stops forming. Filter off the solution, and wash the precipitate in hot water. The precipitate is lead azide, and it must be stored wet for safety. If lead acetate cannot be found, simply acquire acetic acid, and put lead metal in it. Black powder bullets work well for this purpose.
The remaining section covers the other types of materials that can be used to destroy property by fire. Although none of the materials presented here are explosives, they still produce explosive-style results because it does not react nearly as readily. It is a mixture of iron oxide and aluminum, both finely powdered. When it is ignited, the aluminum burns, and extracts the oxygen from the iron oxide. This is really two very exothermic reactions that produce a combined temperature of about 2200 degrees C. This is half the heat produced by an atomic weapon. It is difficult to ignite, however, but when it is ignited, it is one of the most effective firestarters around.
THERMIT
MOLOTOV COCKTAILS
First used by Russians against German tanks, the Molotov cocktail is now exclusively used by terrorists worldwide. They are extremely simple to make, and can produce devastating results. By taking any highly flammable material, such as gasoline, diesel fuel, kerosene, ethyl or methyl alcohol, lighter fluid, turpentine, or any mixture of the above, and putting it into a large glass bottle, anyone can make an effective firebomb. After putting the flammable liquid in the bottle, simply put a piece of cloth that is soaked in the liquid in the top of the bottle so that it fits tightly. Then, wrap some of the cloth around the neck and tie it, but be sure to leave a few inches of lose cloth to light. Light the exposed cloth, and throw the bottle. If the burning cloth does not go out, and if the bottle breaks on impact, the contents of the bottle will spatter over a large area near the site of impact, and burst into flame. Flammable mixtures such as kerosene and motor oil should be mixed with a more volatile and flammable liquid, such as gasoline, to insure ignition. A mixture such as tar or grease and gasoline will stick to the surface that it strikes, and burn hotter, and be more difficult to extinguish. A mixture such as this must be shaken well before it is lit and thrown
CHEMICAL FIRE BOTTLE
The chemical fire bottle is really an advanced molotov cocktail. Rather than using the burning cloth to ignite the flammable liquid, which has at best a fair chance of igniting the liquid, the chemical fire bottle utilizes the very hot and violent reaction between sulfuric acid and potassium chlorate. When the container breaks, the sulfuric acid in the mixture of gasoline sprays onto the paper soaked in potassium chlorate and sugar. The paper, when struck by the acid, instantly bursts into a white flame, igniting the gasoline. The chance of failure to ignite the gasoline is less than 2%, and can be reduced to 0%, if there is enough potassium chlorate and sugar to spare.
EXPLOSIVES CONTAINERS
This section will cover everything from making a simple firecracker to a complicated scheme for detonating an insensitive high explosive, both of which are methods that could be utilized by perpetrators of terror.
PAPER CONTAINERS
Paper was the first container ever used for explosives, since it was first used by the Chinese to make fireworks. Paper containers are usually very simple to make, and are certainly the cheapest. There are many possible uses for paper in containing explosives, and the two most obvious are in firecrackers and rocket engines. Simply by rolling up a long sheet of paper, and gluing it together, one can make a simple rocket engine. Perhaps a more interesting and dangerous use is in the firecracker. The firecracker shown here is one of Mexican design. It is called a "polumna", meaning "dove". The process of their manufacture is not unlike that of making a paper football. If one takes a sheet of paper about 16 inches in length by 1.5 inches wide, and fold one corner so that it looks like this:
________________________________________________________ | |\ | | \ | | \ |______________________________________________________|___\
and then fold it again so that it looks like this:
_______________________________________________________ | /| | / | | / | |__________________________________________________/___|
A pocket is formed. This pocket can be filled with black powder, pyrodex, flash powder, gunpowder,rocket engine powder, or any of the quick-burning fuel- oxodizer mixtures that occur in the form of a fine powder. A fuse is then inserted, and one continues the triangular folds, being careful not to spill out any of the explosive. When the polumna is finished, it should be taped together very tightly, since this will increase the strength of the container, and produce a louder and more powerful explosion when it is lit. The finished polumna should look like a 1/4 inch - 1/3 inch thick triangle, like the one shown below:
^ / \ ----- securely tape all corners / \ / \ / \ / \ / \____________________________ /_____________\__/__/__/__/__/__/__/__/__/ ---------- fuse
The classic pipe bomb is the best known example of a metal-contained explosive. Idiot anarchists take white tipped matches and cut off the match heads. They pound one end of a pipe closed with a hammer, pour in the white- tipped matches, and then pound the other end closed. This process often kills the fool, since when he pounds the pipe closed, he could very easily cause enough friction between the match heads to cause them to ignite and explode the unfinished bomb. By using pipe caps, the process is somewhat safer, and the less stupid anarchist would never use white tipped matches in a bomb. He would buy two pipe caps and threaded pipe (fig. 1). First, he would drill a hole in one pipe cap, and put a fuse in it so that it will not come out, and so powder will not escape during handling. The fuse would be at least 3/4 an inch long inside the bomb. He would then screw the cap with the fuse in it on tightly, possibly putting a drop of super glue on it to hold it tight. He would then pour his explosive powder in the bomb. To pack it tightly, he would take a large wad of tissue paper and, after filling the pipe to the very top, pack the powder down, by using the paper as a ramrod tip, and pushing it with a pencil or other wide ended object, until it would not move any further. Finally, he would screw the other pipe cap on, and glue it. The tissue paper would help prevent some of the powder from being caught in the threads of the pipe or pipe cap from being crushed and subject to friction, which might ignite the powder, causing an explosion during manufacture. An assembled bomb is shown in fig. 2.
_________ _______________ __________ | | ^^^^^^ ^^^^^^ | | | |vvvvv| |_________________________| |vvvvvv| | | | | | | | | | | | | | | | | | | | ___________________________ | | | | | | | | | |^^^^^| vvvvvv_______________vvvvvv |^^^^^^| | |_______| |________|
fig 1. Threaded pipe and endcaps.
________ ________ | _____|________________________________|_____ | | |__________________________________________| | | |: : : : |- - - - - - - - - - - - - - - - -| | | | tissue | - - - - - - - - - - - - - - - - |_| | | : : : |- - - low order explosive - - ---------------------- | | paper | - - - - - - - - - - - - - - - - |-| fuse | |: : : : |- - - - - - - - - - - - - - - - -| | | |________|_________________________________| | | |__________________________________________| | |______| |______| endcap pipe endcap w/ hole
fig. 2 Assembled pipe bomb.
This is one possible design that a mad bomber would use. If, however, he did not have access to threaded pipe with endcaps, he could always use a piece of copper or aluminum pipe, since it is easily bent into a suitable position. A major problem with copper piping, however, is bending and folding it without tearing it; if too much force is used when folding and bending copper pipe, it will split along the fold. The safest method for making a pipe bomb out of copper or aluminum pipe is similar to the method with pipe and endcaps. First, one flattens one end of a copper or aluminum pipe carefully, making sure not to tear or rip the piping. Then, the flat end of the pipe should be folded over at least once, if this does not rip the pipe. A fuse hole should be drilled in the pipe near the now closed end, and the fuse should be inserted. Next, the bomb-builder would fill the bomb with a low order explosive, and pack it with a large wad of tissue paper. He would then flatten and fold the other end of the pipe with a pair of pliers. If he was not too dumb, he would do this slowly, since the process of folding and bending metal gives off heat, which could set off the explosive. A diagram is presented below:
________ _______________________________________________/ | | | | o | |______________________________________________ | \_______|
fig. 1 pipe with one end flattened and fuse hole drilled (top view)
______ ____________________________________________/ | | | | | | o | | |___________________________________________ | | \__|__|
fig. 2 pipe with one end flattened and folded up (top view)
____________ fuse hole | v _________________________________________________ | \ |____ | | \____| | | ______| | / |_____________________________/__________________
fig. 3 pipe with flattened and folded end (side view)
_________________ fuse / | ________ ______________________________|___ _______ | ____| / |- - - - - - - - - - -| - - \ |___ | | |_____/tissue| - - - - - - - - - - - -|- - \_____| | |________ paper |- - - low order explosive - _______| \ | - - - - - - - - - - - - - - / \_____________________________________/
fig. 4 completed bomb, showing tissue paper packing and explosive (side view)
A CO2 cartridge from a B.B gun is another excellent container for a low-order explosive. It has one minor disadvantage: it is time consuming to fill. But this can be rectified by widening the opening of the cartridge with a pointed tool. Then, all that would have to be done is to fill the CO2 cartridge with any low-order explosive, or any of the fast burning fuel- oxodizer mixtures, and insert a fuse. These devices are commonly called "crater makers".
A CO2 cartridge also works well as a container for a thermit incendiary device, but it must be modified. The opening in the end must be widened, so that the ignition mixture, such as powdered magnesium, does not explode. The fuse will ignite the powdered magnesium, which, in turn, would ignite the thermit.
The previously mentioned designs for explosive devices are fine for low-order explosives, but are unsuitable for high-order explosives, since the latter requires a shockwave to be detonated. A design employing a smaller low-order explosive device inside a larger device containing a high-order explosive would probably be used. It would look something like:
_______________________ fuse | | | _________ | _________ | ____|__________________________|___________|____ | | | * * * * * * * * * * * * * * *|* * * * * * * | | | | * * * * * * high explosive | * * * * * * * | | | | * * * * * * * * * * * * * * *|* * * * * * * | | | | * ______ _______________|_ ______ * | | | | * * | __| / - - - - - - | \ |__ | * | | | | * | |____/ low explosive - \____| | * | | | | * * |_______ - - - - - - - - - _______| * | | | | * * * * * \ - - - - - - - - / * * * * * | | | | * * * * * * \_________________/ * * * * * | | | | * * * * * * * * * * * * * * * * * * * * * * | | | | * * * * * * * * * * * * * * * * * * * * * * | | | | * * * * * * * * * * * * * * * * * * * * * * | | | |______________________________________________| | |_______| |_______|
If the large high explosive container is small, such as a CO2 cartridge, then a segment of a hollow radio antenna can be made into a low-order pipe bomb, which can be fitted with a fuse, and inserted into the CO2 cartridge.
GLASS CONTAINERS
Nonetheless, glass containers such as perfume bottles can be used by a demented individual, since such a device would not be detected by metal detectors in an airport or other public place. All that need be done is fill the container, and drill a hole in the plastic cap that the fuse fits tightly in, and screw the cap-fuse assembly on.
________________________ fuse | | | _____|_____ | ___|___ | | > | < | drill hole in cap, and insert fuse; | > | < | be sure fuse will not come out of cap | > | < | | | | | | | | | | screw cap on bottle | | | | V V
_________ < > < > < > / \ / \ / \ | | fill bottle with low-order explosive | | | | | | | | |___________|
Large explosive devices made from glass containers are not practicle, since glass is not an exceptionally strong container. Much of the explosive that is used to fill the container is wasted if the container is much larger than a 16 oz. soda bottle. Also, glass containers are usually unsuitable for high explosive devices, since a glass container would probably not withstand the explosion of the initiator; it would shatter before the high explosive was able to detonate.
Plastic containers are perhaps the best containers for explosives, since they can be any size or shape, and are not fragile like glass. Plastic piping can be bought at hardware or plumbing stores, and a device much like the ones used for metal containers can be made. The high-order version works well with plastic piping. If the entire device is made out of plastic, it is not detectable by metal detectors. Plastic containers can usually be shaped by heating the container, and bending it at the appropriate place. They can be glued closed with epoxy or other cement for plastics. Epoxy alone can be used as an endcap, if a wad of tissue paper is placed in the piping. Epoxy with a drying agent works best in this type of device.
|| || || || ||\_____________/|| || || || epoxy || ||_______________|| || || || tissue || || paper || ||_______________|| ||***************|| ||***************|| ||***************|| ||***************|| ||** explosive **|| ||***************|| ||***********----------------------- fuse ||***************|| ||---------------|| || || || tissue || || paper || ||_______________|| || || || epoxy || || _____________ || ||/ \|| || || || ||
One end must be made first, and be allowed to dry completely before the device can be filled with powder and fused. Then, with another piece of tissue paper, pack the powder tightly, and cover it with plenty of epoxy. PVC pipe works well for this type of device, but it cannot be used if the pipe had an inside diameter greater than 3/4 of an inch. Other plastic puttys can be used int this type of device, but epoxy with a drying agent works best.
ADVANCED USES FOR EXPLOSIVES
The techniques presented here are those that could be used by a person who had some degree of knowledge of the use of explosives. Some of this information comes from demolitions books, or from military handbooks. Advanced uses for explosives usually involved shaped charges, or utilize a minimum amount of explosive to do a maximum amount of damage. They almost always involve high- order explosives. KEEP IN MIND THAT ALL EXPLOSIVES ARE DANGEROUS, AND SHOULD NEVER BE MADE OR USED!!
A shaped charge is an explosive device that, upon detonation, directs the explosive force of detonation at a small target area. This process can be used to breach the strongest armor, since forces of literally millions of pounds of pressure per square inch can be generated. Shaped charges employ high-order explosives, and usually electric ignition systems.An example of a shaped charge is shown below.
+ wire ________ _______ - wire | | | | | | _ _________|_________|____________ ^ | ________|_________|__________ | | | | | | | | | | | \ igniter / | | | | | \_______/ | | | | | priming charge | | | | | (mercury fulminate) | | | | | ^ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | / \ | | 8 inches high | | / \ | | | | / high \ | | | | | / explosive \ | | | | | / charge \ | | | | | / \ | | | | |/ \| | | | | ^ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | | | | / \ | | ------- 1/2 inch | | | / \ | | thick steel | | | / \ | | pipe | | | / \ | | | | |/ \| | | hole for | | | | hole for | screw | | | | screw | | | | | V_______ ___________| | | |___________ ________ |______| |____________| |_____________| |______| |<------- 8 inches -------->|
If a device such as this is screwed to a safe, for example, it would direct most of the explosive force at a point about 1 inch away from the opening of the pipe. The basis for shaped charges is a cone-shaped opening in the explosive material. This cone should have an angle of 45 degrees. A device such as this one could also be attached to a metal surface with a powerful electromagnet.
A variation on shaped charges, tube explosives can be used in ways that shaped charges cannot. If a piece of 1/2 inch plastic tubing was filled with a sensitive high explosive like RDX, a different sort of shaped charge could be produced; a charge that directs explosive force in a circular manner. This type of explosive could be wrapped around a column, or a doorknob, or a telephone pole. The explosion would be directed in and out, and most likely destroy whatever it was wrapped around. In an unbent state, a tube explosive would look like this:
|| || || || ||\____/|| || epoxy|| ||______|| || || ||tissue|| || paper|| ||______|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| || RDX || ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| ||******|| || ____ || || | s| || || | q| || || | u| || || | i| || || | b| || || | b| || || |__| || ||__||__|| ||tissue|| || paper|| ||__||__|| || || || || epoxy|| || || || || _||_ || ||/ || \|| || || || || || || ||_______ + wire ______________ | |________ - wire ______________
When an assassin or terrorist wishes to use a tube bomb, he must wrap it around whatever thing he wishes to destroy, and epoxy the ends of the tube bomb together. After it dries, he/she can connect wires to the squib wires, and detonate the bomb, with any method of electric detonation.
If a highly flammable substance is atomized, or, divided into very small particles, and large amounts of it is burned in a confined area, an explosion similar to that occurring in the cylinder of an automobile is produced. The tiny droplets of gasoline burn in the air, and the hot gasses expand rapidly, pushing the cylinder up. Similarly, if a gallon of gasoline was atomized and ignited in a building, it is very possible that the expanding gassed would push the walls of the building down. This phenomenon is called an atomized particle explosion. If a person can effectively atomize a large amount of a highly flammable substance and ignite it, he could bring down a large building, bridge, or other structure. Atomizing a large amount of gasoline, for example, can be extremely difficult, unless one has the aid of a high explosive. If a gallon jug of gasoline was placed directly over a high explosive charge, and the charge was detonated, the gasoline would instantly be atomized and ignited. If this occurred in a building, for example, an atomized particle explosion would surely occur. Only a small amount of high explosive would be necessary to accomplish this feat, about 1/2 a pound of TNTor 1/4 a pound of RDX. Also, instead of gasoline, powdered aluminum could be used. It is necessary that a high explosive be used to atomize a flammable material, since a low-order explosion does not occur quickly enough to atomize or ignite the flammable material.
LIGHTBULB BOMBS
An automatic reaction to walking into a dark room is to turn on the light. This can be fatal, if a lightbulb bomb has been placed in the overhead light socket. A lightbulb bomb is surprisingly easy to make. It also comes with its own initiator and electric ignition system. On some lightbulbs, the lightbulb glass can be removed from the metal base by heating the base of a lightbulb in a gas flame, such as that of a blowtorch or gas stove. This must be done carefully, since the inside of a lightbulb is a vacuum. When the glue gets hot enough, the glass bulb can be pulled off the metal base. On other bulbs, it is necessary to heat the glass directly with a blowtorch or oxy-acetylene torch. When the bulb is red hot, a hole must be carefully poked in the bulb, remembering the vacuum state inside the bulb. In either case, once the bulb and/or base has cooled down to room temperature or lower, the bulb can be filled with an explosive material, such asblack powder. If the glass was removed from the metal base, it must be glued back on to the base with epoxy. If a hole was put in the bulb, a piece of duct tape is sufficient to hold the explosive in the in the bulb. Then, after making sure that the socket has no power by checking with a working lightbulb, all that need be done is to screw the lightbulb bomb into the socket. Such a device has been used by terrorists or assassins with much success, since nobody can search the room for a bomb without first turning on the light.
BOOK BOMBS
Concealing a bomb can be extremely difficult in a day and age where perpetrators of violence run wild. Bags and briefcases are often searched by authorities whenever one enters a place where an individual might intend to set off a bomb. One approach to disguising a bomb is to build what is called a book bomb; an explosive device that is entirely contained inside of a book. Usually, a relatively large book is required, and the book must be of the hardback variety to hide any protrusions of a bomb. Dictionaries, law books, large textbooks, and other such books work well. When an individual makes a bookbomb, he/she must choose a type of book that is appropriate for the place where the book bomb will be placed. The actual construction of a book bomb can be done by anyone who possesses an electric drill and a coping saw. First, all of the pages of the book must be glued together. By pouring an entire container of water-soluble glue into a large bucket, and filling the bucket with boiling water, a glue-water solution can be made that will hold all of the book's pages together tightly. After the glue-water solution has cooled to a bearable temperature, and the solution has been stirred well, the pages of the book must be immersed in the glue-water solution, and each page must be thoroughly soaked. It is extremely important that the covers of the book do not get stuck to the pages of the book while the pages are drying. Suspending the book by both covers and clamping the pages together in a vice works best. When the pages dry, after about three days to a week, a hole must be drilled into the now rigid pages, and they should drill out much like wood. Then, by inserting the coping saw blade through the pages and sawing out a rectangle from the middle of the book, the individual will be left with a shell of the book's pages. The pages, when drilled out, should look like this:
________________________ | ____________________ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |__________________| | |______________________| (book covers omitted)
This rectangle must be securely glued to the back cover of the book. After building his/her bomb, which usually is of the timer or radio controlled variety, the bomber places it inside the book. The bomb itself, and whatever timer or detonator is used, should be packed in foam to prevent it from rolling or shifting about. Finally, after the timer is set, or the radio control has been turned on, the front cover is glued closed, and the bomb is taken to its destination.
The phone bomb is an explosive device that has been used in the past to kill or injure a specific individual. The basic idea is simple: when the person answers the phone, the bomb explodes. If a small but powerful high explosive device with a squib was placed in the phone receiver, when the current flowed through the receiver, the squib would explode, detonating the high explosive in the person's hand. Nasty. All that has to be done is acquire a squib, and tape the receiver switch down. Unscrew the mouthpiece cover, and remove the speaker, and connect the squib's leads where it was. Place a high explosive putty, such as C-1 in the receiver, and screw the cover on, making sure that the squib is surrounded by the C-1. Hang the phone up, and leave the tape in place. When the individual to whom the phone belongs attempts to answer the phone, he will notice the tape, and remove it. This will allow current to flow through the squib. Note that the device will not explode by merely making a phone call; the owner of the phone must lift up the receiver, and remove the tape. It is highly probable that the phone will be by his/her ear when the device explodes...
One type of pyrotechnic device that might be employed by a terrorist in many way would be a smoke bomb. Such a device could conceal the getaway route, or cause a diversion, or simply provide cover. Such a device, were it to produce enough smoke that smelled bad enough, could force the evacuation of a building, for example. Smoke bombs are not difficult to make. Although the military smoke bombs employ powdered white phosphorus or titanium compounds, such materials are usually unavailable to even the most well-equipped terrorist. Instead, he/she would have to make the smoke bomb for themselves.
Most homemade smoke bombs usually employ some type of base powder, such asblack powder or pyrodex, to support combustion. The base material will burn well, and provide heat to cause the other materials in the device to burn, but not completely or cleanly. Table sugar, mixed with sulfur and a base material, produces large amounts of smoke. Sawdust, especially if it has a small amount of oil in it, and a base powder works well also. Other excellent smoke ingredients are small pieces of rubber, finely ground plastics, and many chemical mixtures. The material in road flares can be mixed with sugar and sulfur and a base powder produces much smoke. Most of the fuel-oxodizer mixtures, if the ratio is not correct, produce much smoke when added to a base powder. The list of possibilities goes on and on. The trick to a successful smoke bomb also lies in the container used. A plastic cylinder works well, and contributes to the smoke produced. The hole in the smoke bomb where the fuse enters must be large enough to allow the material to burn without causing an explosion. This is another plus for plastic containers, since they will melt and burn when the smoke material ignites, producing an opening large enough to prevent an explosion.